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I. SUMMARY 

A second  order  slender wing theory  has  been  developed  for  calculating 

the  supersonic flow over  low  aspect  ratio  wings  with  subsonic  leading  edges 

and  leading  edge  separation.  The  theory is second  order  in  terms of the 

ratio of span  to  chord.  The  theory  has  been  developed  by  using a combined 

application of the  method of strained  coordinates  and  matched  asymptotic 

expansions.  The  Brown  and  Michael flow model  has  been  used  to  model  the lead- 
ing  edge  separation.  The  theory  is  compared  with  experiment  for  delta  wings 

and  provides a substantial  improvement  over  previous  slender wing resul ts  

but  still   overestimates  normal  force.  The  theory  qualitatively  predicts  the 

correct  Mach  number  trend  and  approaches  the  correct  levels  for a sonic 

leading  edge.  The  trend  is  somewhat  overpredicted,  however,  producing 

best  agreement  at  the  higher  Mach  numbers. 
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Il. LIST O F  SYMBOLS 

a 

A 

B 

C 

C' 

d 

F, 

1. 

ra t io  of span  to  root  chord, c b 

aspect   ra t io  

function  defined  by  Equation (C-3) 

half  span of wing at   trail ing  edge 

source  strength  defined  by  Equation (B- 17a) 

half  root  chord of wing 

l i f t  coefficient 

normal  force  coefficient 

pressure  coefficient 

difference  between  upper  and  lower  surface 
pressure  coefficients 

radius of cylinder  in  plane  (see  Figure  15B) 

complete  elliptic  integral of second kind of modulus 

gage  functions  used  in  Equations (A-1)  and ( A - 3 )  

complex  function  defined  by  Equation  (58) 

normal  force  function  defined  by  Equation (B-  14) 

normalized half span of wing a s  a function of 

function  defined  by  Equation  (45) 

function  defined  by  Equation  (44) 

function  defined  by  Equation (C-8)  

m- 
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1.P 

k 

U 

K 
- 

-P 

4 

Y 

R2  

R .  I? 

J 

- 
t 

designates  imaginary  part of complex  quantity 

modulus of elliptic  integral  or  edge  angle 
parameter  for  biconvex  profile  (see  Figure 15A) 

function of Mach  number ( K  = M z  [2 - M Z  ( 1  - $11) 

K 
function of Mach  number (K = 7) 
operational  notation  for  wave  operator  (see  Equation (7))  

f reestream  Mach  number 

real   coordinate of vortex  core  in  physical  plane 

normalized  real   coordinate of vortex  core  (+= ?/#,I 

doublet   strength  for  outer  solution 

imaginary  coordinate of vortex  core  in  physical  plane 
o r  sound  speed 

normalized  imaginary  coordinate of vortex  core  q = ? / % I  

distance  from S axis  in S I  space (7 = w) 
function  defined  by  Equation (C-4) 

function  defined  by  Equation (C-5)  

designates  real   part  of complex  quantity 

surface  shape  function 

strained  outer  variables  (defined  by  Equation (6) )  

strained  inner  variables  defined  by  Equation (24) 

wing  thickness  ratio  in  cross flow  plane 
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surface  thickness  function 

normalized  span  coordinate ( U z / % )  

Cartesian  velocity  component  in X ,  7,  a direction 
respectively 

complex  potential  for first inner  solution  for 
infinitely  thin  wing 

complex  function  whose  real  part is @ ; Z I  

complex  function  whose  real  part is 

complex  potential  for first inner  solution 
biconvex  profile  wing 

Cartesian  coordinates  normalized  by c 

angle of attack 

angle  defined  by  Equation (C- 1 3 )  

angle  defined  by  Equation (C- 15) 

angle  defined  by  Equation (C-6)  

angle  defined  by  Equation (C-7) 

ra t io  of specific  heats 

vortex  strength 

small parameter   or   thickness   ra t io  

angle of attack  parameter ( 2 = - s i n a  
tan A 

transformed  complex  variable  defined  by 

Vortex  position  and  conjugate  position  in 

for 

Equation  (B- 5) 

G plane 
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edge  angle  for  biconvex  profiles  (see  Figure  15A) 

angle  defined  by  Equations (C- 12) and (C- 14) 

angle  defined  by  Equation  (c-16) 

angle  defined  by  Equation (B- 17b) 

real   vortex  coordinate  in 2 plane 

normalized  real   vortex  coordinate ( h = x) 
outer  complex  variable ( $ = a 0-1 

Y h 

straining of X coordinate 

complex  inner  variable 

vortex  position  and  conjugate  position  in 6 plane 

delta  wing  semi-apex  angle 

imaginary  vortex  coordinate  in 1 plane 

normalized  imaginary  vortex  coordinate T = z, 4 

A 

velocity  potential 

@;I, m :2,,4:** inner  solutions  for  velocity  potential 9 ;7 

x complex  transform of fT plane  (see  Figure 1 9 )  

E ?& decomposition of 4 (see  Equation (5) )  
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III. INTRODUCTION 

The  nonlinear  aerodynamic  characterist ics of low  aspect  ratio  or  slender 

wings  have  been  the  subject of extensive  theoretical   and  experimental   investi-  

gations  over  the  past  several  years.  The  prime  motivation of these  investiga- 

tions  has  been  the  application  to  the low speed  and  supersonic  aerodynamic 

problems of high-speed  aircraft  and  lifting  reentry  vehicles.  Moreover, a 
further  understanding of the  flow  over  such  wings  would  also  aid  in  the  design 

of optimum  wings  for  supersonic  flight. 

The  unique  feature of the flow  fields  over  slender  wings is the  leading 

edge  separation.  Spiral  vortex  sheets  emanate  from  the  leading  edges  and 

dominate  the  upper  wing  surface  flow  field.  (Such a flow is shown  schematically 

in  Figure 1 .) Because  the  vortex  l ines  on  these  sheets  are  very  highly  swept 

with  respect  to  the  freestream  the  areas of significant  total   pressure  loss are 

confined  only  to  the  core  area of the  spiral  sheet  and  to a small area  adjacent 

to  the  leading  edge.  Therefore,  an  inviscid flow analysis  should  be  capable of 

treating  the  major  details  of the  flow  field. 

Although  an  accurate  analytical  method  utilizing  an  intuitive  leading-edge 

suction  analogy  exists  for  estimating  overall  forces on slender  wings,  Refer- 

ence  1,  methods  to  predict  detailed  flow  field  quantities  and  surface  pressure 

distributions  are  needed. 

F r o m  a mathematical  viewpoint  the  separated  flow  results  in a non- 

linearity  through  the  boundary  conditions  because  the  location of the  vortex 

sheets is not  known a priori.  The  existing  analyses of low aspect  ratio  wings 

have  employed  the  slender  wing  or  slender  body  approximations  whereby  the 

problem  can  be  reduced  to a quasi   two-dimensional  problem  in  the  cross flow 

plane.  The  cross  flow  problem is still  nonlinear  through  the  boundary  condi- 

tions,  but  in  the  two-dimensional  case  the  problem  may  be  solved  with  com- 

plex  variable  theory.  The  existing  analyses,  References 2 through 4, differ 

only  in  their  representation of the  spiral   vortex  sheet.   The  simplest   repre- 

sentation is that of Brown  and  Michael  (Reference 2). The  sheet  representation 

that  physically  corresponds  closest  to  experimental  observation is that of 

Smith  (Reference 4). All  of these  theories,  however,  considerably  overesti- 

mate  the  forces on slender  wings. 



Most  correlations of theory  and  experiment  have  been  made  with  slender 

delta  wings.  Although  the  slender wing theory  results  are  independent of Mach 

number,  the  d,elta wing solutions  are  conical  and  therefore  only  appropriate at 
supersonic  speeds.  At  subsonic  speeds  the  conical  solutions  violate  the  Kutta 

conditions at the  trailing  edge  and  hence  the  correlation is expected  to  be  poor. 

If it is assumed  that  Reference 4 presents  an  adequate  model of the  cross  

flow  then  the  reasons  for  the  failure of these  theories  in  the  supersonic flow 

case  is evidently  due  to  the  slenderness  assumptions  employed  and/or  neglect 

of the  nonlinear  terms  in  the  equations of motion.  The  present  work  corrects 

these  deficiencies by developing  corrections  to  the  slender wing theory  for 

non-slenderness  and  nonlinearity  in  the  equations of motion.  This  is  done by 

developing  a  formal  systematic  expansion  procedure  for  the  velocity  potential 

in  which  slender wing theory is the first term  in  the  expansion.  This  approach 

retains  the  simplicity  and  advantages of the   c ross  flow approach of slender 

wing theory  and  has  had  some  success  in  the  incompressible flow case .  

Reference 5. The  terminology of perturbation  theory  as  defined  in  Reference 6 
is  used  throughout  this  report. 

The  slender wing problem  involves  several   small   parameters  in  which 

an  expansion  may  be  considered  (for  example,  angle of attack,  thickness  ratio,  

and  aspect  ratio).  The  problem  then  is  to  devise  an  expansion  procedure  that 

accounts  properly  for all of these  small   parameters .  

For  supersonic flow the  problems  associated  with a straightforward 

perturbation  scheme  in  terms of angle of a t tack  and/or   thickness   are   fa i r ly  

well  known.  (See,  for  example,  Reference 6 . )  The  f irst   terms  in  such a 

scheme  are  the  well-known  linear  theory of supersonic  flow.  Problems, 

however,   arise  with  the  higher  order  terms.  In  two-dimensional  f low,  the 

second  order  terms  become  unbounded far from  the body as may  be  shown 

from  the  results of Reference 7 .  In  three-dimensional flow the  second  order 

t e rms  compound  the o rde r  of singularities of the  first-order  solution to the 

point  that   the  pressure  distributions  are  generally  non-integrable.   The  method 

of strained  coordinates,  Reference 8, has  been  developed  to  remedy  these 

types of nonuniformities.  A  more  heuristic  argument of the  physical  reasons 

for  the  failures of a straightforward  perturbation  scheme  may  be found in 

Reference 9 .  
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The  strained  coordinate  technique is well  developed  for  two-dimensional 

problems  (see  Chapter 6 ,  Reference 6) ,  but is not  well  developed  for  three- 

dimensional  wing  problems.  The  difficulty  with  application  to  wings  lies  in 

the  analytical  evaluation of the  pdrticular  integrals  required  for  the  higher 

order  solutions.   Clarkson,  Reference  10,   has  formulated  the  general   three- 

dimensional  problem  and  presents a solution  for a rolling wing  with straight,  

unswept  trailing  and  leading  edges. No solutions  exact  to  second-order  are 

known for  wings of more   p rac t ica l   in te res t .  

Sugo,  Reference 11, has  obtained  approximate  expressions  for  the 

par t icular   integrals   required  for   the  case of a delta wing  with  subsonic  and 

supersonic  leading  edges.  (The  spiral  vortex  sheets  are  not  modeled  for  the 

subsonic  leading  edge  case.)  The  approximation,  however,  does  not  correspond 

to a formal  systematic  expansion  procedure.  This  has  prompted  Lee,  Ref- 

erence 12,  to  propose a slightly  different  approximate  particular  integral  for 

the  supersonic  leading  edge  case.  Lee's  work  also  does not correspond  to a 

formal  systematic  approximation  procedure so that  both  works  are  somewhat 

arbitrary  from  this  standpoint.  In  both  works  the  straining is chosen  to  control 

the  growth of singularity  in  the  higher  order  solutions  without  regard  for  the 

far  field  nonuniformities of the  higher  order  solutions. 

The  present  work  overcomes  these  limitations by  using  the  technique 

of matched  asymptotic  expansions  to  obtain a formal  systematic  approximation 

for  the  required  particular  integrals  and  to  develop a straining  that  simultaneously 

controls  the  singularities  and  far  field  nonuniformities of the  second  order 

solution.  Although  the  techniques of strained  coordinates  and  matched  asymptotic 

expansions  are  well  documented  in  the  literature, a short  outline of these two 

methods  which  is  sufficient  for  their  application  to  the  present  problem is 

contained  in  Appendix A .  

The  Brown  and  Michael  cross flow model,  Reference 2,  was  used  for  the 

c r o s s  flow  model of the  present  work.  This  selection  was  made  in  order  to 

facilitate  evaluation of the  overall  expansion  scheme.  This  selection  allows 

almost  complete  analytical  solution  to  the  problem.  Although  the flow model 

of Smith,  Reference 4, would appear  to  be  more  physically  realistic,  the 

overall   forces  predicted by this  model  are  only  slightly  different  from  those 
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of Reference 2 .  Hence, the additional  complexities of the  Smith  model  are  not 

warranted  until  the  overall  expansion  scheme is evaluated. 

The  major  portion of this  report   presents  the  formulation of the  general 

three-dimensional  problem,  including  thickness,  and  the  second  order  solution 

for  the  infinitely  thin flat wing. 

Al l  of the  existing  slender wing treatments  are  for  infinitely  thin  wings.  

The  effect of thickness upon the  flow  field is then  an  open  question  from  the 

theoretical   viewpoint,   at   least .   For  those  conditions  where  the  vortex  sheet 

lies  close  to  the wing the  thickness of the wing may  be  significant.  This  has 

prompted  the  consideration of wing thickness. A slender wing analysis 

employing  the  ideas of the  Brown  and  Michael  flow  model  has  been  completed 

for  a conical wing  with  biconvex circular  arc  profile  in  the  cross  f low  plane.  

Although  the  complete  second  order  solution  has  not  been  obtained, no other 

analysis  accounting  for  thickness  is  available  and  it  was  therefore  considered 

appropriate  to  present  the  slender wing analysis  in  Appendix B. 
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IV. FORMULATION O F  GENERAL  PROBLEM 

The  overall  expansion  scheme  employed  first  assumes  an  expansion 

of the  velocity  potential  in  terms of thickness  and  angle of attack.  This 

decomposes  the  solution  into a sequence of l inear  problems.  These  l inear 

problems  are  then  solved by the  matched  asymptotic  expansion  technique 
using a , the  ratio of span  to  root  chord,  as  the 

The  fluid is assumed to  be  perfect,  and  the 

irrotational.  Then a velocity  potential 6 exis ts  

small   parameter .  

flow is assumed  to  be 

such  that 

(the  coordinate  system  used  is  shown  in  Figure 2 ) .  

The  momentum  equation  may  then  be  expressed  as  (Reference 13) 

and  the  energy  equation  may  be  expressed  as 

where p is the  local  speed of sound  and  a  subscript of go re fers  to  the  free- 

stream  conditions  ahead of the  wing.  The  subscript  notation  is  used  for 

differentiation. A body axis  system is used  and  the wing surface  ordinates 

a r e  given  in  the  form ( x ,  ? , $ )  = 0 . The  boundary  condition of flow 

tangency  at  the wing surface  is  then  given by 

where V is the vector  differential   operator v 3 

and  the  dot  signifies  the  dot  product. 
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The  interest  is in  thin  wings of small   aspect   ra t io   a t   smal l   angles  of 
attack.  In  the  body  axis  system,  then,  the  wing  surface is expressible  in 

the  form 

where 6 i s  a smal l   parameter   tha t   se rves   as  a measure  of the  wing thickness.  

For  wings of small  thickness  at  small  incidences  an  expansion of the  velocity 

potential 9 of the form 
- 

is  assumed.  The  independent  spatial  variables %, Lj ,2 are  also  expanded  in 

the  form 

Here f, and F2 a r e  the  straining  required  to  keep  the  first  order  solution 

uniformly  valid  in  the  entire  flow  field.  The  original  nonlinear  problem  may 

now be  decomposed  into a sequence of l inear  problems by substituting  Equa- 

tions (5) and (6)  into  Equations ( 2 )  and ( 3 )  and  equating  like  powers of the  gage 

functions, E and sin a. This  procedure  produces  the  following  sequence of 

partial  differential  equations  for  the ?,kL 

for *: = 1 

for A. = 2 
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for A. = 4 

L (V+ 1 = 

The  corresponding  boundary  conditions  are found  by an  application of the  same 

procedure  to  Equation (4).  It i s   f i r s t  noted  that  for  the  class of wings  under 

consideration  that 

J, - O ( 1 )  

J c  - O C I I  

where 

then 
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Here  it wil l  be  noted  that all the  conditions  are  applied  on  the  body  itself, 

d = 0 . It would be  permissible  to  transfer  the  boundary  conditions to the 

t7 = 0 plane  via a Taylor  series  expansion of Equations  (12)  through  (16)  about 

the = 0 plane.  This  procedure  has  not  been  followed  here  because it proves 

more  expedient  for  the  present  analysis  to  satisfy  the  boundary  conditions  on 

the  body  itself. 

At  this  stage it will  be  noted  that  Equations ( 7 )  and  (12)  constitute  the 
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standard  lifting  problem  from  linear  theory,  and  Equations (8) and  (13) 

constitute  the  standard  thickness  problem  from  linear  theory.  The p3, %ad ?& 

terms  are   correct ions  to   the  l inear   theory  to   account   for   the  nonl inear   terms 

in  the  equations of motion  neglected  in  the  first  approximation. 

The  small  angle  expansion of cos is required  to  obtain  Equations (8), 
(9) and  (10). If this  expansion is not  used,  an  incompatible  set of equations 

for  the  higher  order  solutions is developed. 

In  isentropic flow the  pressure  coefficient Cp may  be  obtained  from 

the  energy  equation as 

In   t e rms  of the , and  retaining  terms  through  second-order  in  the  gage 

functions,  this  becomes: 

The K. a r e  now determined  by  the  method of matched  asymptotic  expansions 

using  the  ratio of span  to  chord, a , as  the  small  parameter  for  expansion 

purposes   (sometimes  referred  to   as   s lenderness   parameter) .  

Thus,  the  overall  expansion  scheme  may  be  summarized  as first an 

expansion of the  velocity  potential  in  terms of S 1 n  d , and , with a subsequent 

expansion  in  terms of CL , the  slenderness  parameter.   The  order of expansion 

with  respect  to  these  parameters is found  to  be crucial.  The  initial  expansion 

must   be  made  in   terms of SinOL in   order  to  avoid  an  anomalous  dependence on 

the  axis  system  employed. 
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V. INFINITELY THIN FLAT WING 

For  an  infinitely  thin  wing 6 = 0 . The  velocity  potential,  Equation (5) , 
is reduced  to 

and  the  corresponding  independent  variables  expand as 

The wing planform is given  by 3e,e = a AG) 0 L A C X )  4 7 

Solution  for IK. 
The  partial  differential  equation  for l,Y, is  Equation ( 7 ) .  The  boundary 

condition,  Equation ( 12), becomes 

is then  determined by the  method of matched  asymptotic  expansions. 

The  outer  expansion of x valid far from  the wing  and  valid  for  small d is 

of the  form 

where 

#:, satisfies  the  wave  equation,  and  in  the  limit as CL - 0 the wing shrinks 

to a line  which  may  be  represented  by a line  doublet  distribution.  Such a 

10 



potential is 

where Y 2  = q z  + r' and p = d i F 7  

The  doublet  strength is f (5,)  and is presently unknown. It will  be 
- 

determined by matching  with  an  inner  solution. 

The  inner  problem is obtained  by  stretching  the  coordinates  normal  to 

the  wing  to  regain  the  detail  lost  near  the  wing.  The  inner  variables  are 

The  inner  solution  valid  near  the wing for  small  values of a i s  of the  form 

Substitution of Equations  (24)  and  (25)  into  Equation (7)  and  equating  like 

powers of a further  decomposes  the  problem  into  the  following  sequence. 

of problems . 

with  boundary  conditions: 

(P:, ~1 Y for z ,  Y - 
11 



Equations ( 2 6 )  and  (29)  are  recognized as the familiar c r o s s  flow problem 

from  slender wing theory  (Reference  14). 

For   the  present   problem  the flow  model of Brown  and  Michael  (Reference 

2) has  been  used.   This   cross  flow  model is shown  in  Figure 3 .  The  model 

consists of the  horizontal slit which  represents  the  trace of the  wing  in  the 

c r o s s  flow  plane  plus two concentrated  vortices  located  symmetrically  about 

the  vertical  axis  on  the  lee  side of the  wing.  The  strengths of the  vortices 

a r e  of equal  magnitude  but  opposite  sense.  The  vortices of strength r a r e  

located at and-  in  the  complex  plane.  The  appropriate $: may  then  be 

expressed as 

g;, = R.P w,, ( r ;  S I  (32)  

where 6 is the  complex  variable 3+1 y in  the  cross  flow  plane  and 

For   conical  flow  the  method of determining  and 4 may  be  found  in  Appen- 

dix B. 

The  two term  outer  expansion of Equation ( 3 3 )  is 

where 5 a 6 . 

In t e r m s  of the  inner  variables  this is 

where  the  substitution 
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has  been  used. 

The  one  term  inner  expansion of Equation  (23) is 

Application of the  asymptotic  matching  principle  yields 

P < S )  = 4Tr (t A' + -) r x  TT ' 

where  the  prime  indicates  differentiation  with  respect  to 5 . For  the  case 

of no  leading  edge  separation, r = 0) Equation  (38)  leads  directly to the  well 

known slender wing resul t  

The  next  term  in  the  inner  solution  may now be determined.  The  in- 

homogeneous  equation  for @ : z ,  , Equation (27), i s  solved by first t rans-  

forming  the  independent  variables by 

Then  le t  $t2, = R .  P. W,2, . Equation (27) then  becomes 

w,2, i s  then  composed of a particular  solution  that  satisfies  Equation  (40)plus 

a complementary  solution  that  satisfies  the  corresponding  homogeneous 
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equation, i. e .  WlZl  = W,,, ( P I  + WJ,21(C I . W,,,PP, is determined 

immediately  by  integration of Equation (40) as 

Except  for a multiplicative  constant  and  constant of integration,  this  solution 

is  the  same as the  particular  solution for the  incompressible  case  (Reference 5 ) .  
The  complementary  portion of the  solution  is  determined s o  a s  to  meet  the 

boundary  condition,  Equation (30) , and  to  match  with  the  inner  expansion of 

the  outer  solution.  The  required  expansion of the  outer  solution is the  two  term 

inner  expansion of Equation (22) which is 
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The  complete  second  inner  solution  which  satisfies  the  boundary  condition 

Equation (30), and  whose  outer  expansion  matches  Equation (42) is found by 

inspection  to  be 

Where 

H, = - ${(F) rx 11 z (A z - I )  + 14, + ( $ ) ' I +  [( 2 + 4') R. A]"> 
R 
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The  log  term, &:zz a is determined by  iflspection to be 

is then known  to  fourth  order  in  terms of the  small  quantities  near  the 

body ( i .e .   through  terms of o rde r  a Z s ; n 2 a  and a'stn a]. This is sufficient 

for  purposes of evaluating  the  pressure  coefficient  on  the  body.  That is, it 

is not  necessary  to  determine $o,2 to  obtain  the  desired  degree of 

approximation on the  body  surface. 

Solution  for V+ and  Straining 

The  partial  differential  equation  for V+ is Equation (10) 

Both r, and a r e  to  be determined by the  matched  asymptotic  expansion 

technique. By substitution of the known resul ts  for in  the  right-hand  side 

of Equation (47), it   can  be  seen  that far from  the  body  the  outer  solutions  are 

of the  form 

and 
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It is a l so  known that  the p,s y,ss term  in  Equation (47) leads to 
particular  solutions  proportional  to q (see  Reference 7 ) .  The   t e rms   a r e  

then  unbounded far from  the wing and  are  obviously  not of second  order  in  the 

far field.  The  straining  should  then  eliminate  the ss gS5 t e rm  f rom 

Equation (47). To accomplish this  let 

- 
where = 2/3' 

K 

then  Equation (47) reduces to 

which  has  the  particular  solution 

Near  the  body  the  inner  solutions  are of form 

(54) 

and  Equation (47) reduces  to 
' .  

This  can  be  solved  in a similar  fashion  to  Equation (27)  by letting 
@:, = R,/? W,, (a, e )  then  the  particular  portion of w+f i s  

- 
W 4 , ( P )  = - - + r i awl, 

4 as as 4 fl as (55) 
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When  the  complementary  portion is added  to  satisfy  the  boundary  condition or 

the  body  surface  (Equation  (15)),  the  result is 

Thus far th e solution  for v+ is gen 

obtained  without  specifically  knowing N,, 
eral in  that  Equation  (56)  ca .n be 

The first t e rm on  the  right-hand  side of Equation  (56)  leads  to  nonintegrable 

singularit ies  in  surface  pressure at the  leading  edge.  This  can  be  remedied  by 

letting 

where b-, is a function  which  allows  matching  and  whose  value  and S deriva-  

tive  vanish on the  wing  surface.  Matching  the  outer  expansion of Equation  (56) 

with  the  inner  expansion of Equation  (51), 6 is determine as 

7y4 is now determined  through  sufficient  order  in small quantities. 

The first  t e r m  of Equation (57) is seen  to  be  essentially  the  straining 

proposed by  Sugo in  Reference  11  for  the  subsonic  leading  edge  case.  The 

second term of Equation  (57)  vanishes on  the  wing  but is needed  to  correct  the 

nonuniformities  in  the far field. It is thus  seen  that  Sugo's  approximations 

should  be  valid  near  the  wing. 

The  results  for  no  leading  edge  separation  may  be  extracted  from  the 

previous  analysis by formally  letting = 0 . 
It will  be  noted  that  the first term  in  the  inner  expansion of j4+ is 

proportional  to a' . The  term is then  fourth  order   in   terms of small 
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quantities as were  both @i2, and @:,, . The first correction  for 

the  nonlinear  terms  neglected  in  the  linear  theory  are  then  the  same  order as 

the first nonslenderness  correction  to  slender wing theory. 

Pressure  Coefficient 

The  inner  solutions  for ?+? and v4 have  been  used  to  calculate 

wing surface  pressures.   The  corresponding  form of Equation (18) is 

The  details of evaluating  this  expression  are  given  in  Appendix C.  The  normal 

force  coefficient c, has  been  evaluated by numerical  integration of this 

expression  over  the wing surface.  
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VI. RESULTS AND COMPARISON WITH EXPERIMENT 

A comparison of the  theory  with  experimental  normal  force  coefficients 

f rom  Reference 15 is shown  in  Figures 4 through 6. The  theory is compared 

with  the  experimental l i f t  coefficients  on  an  aspect  ratio  one-quarter wing in  

F igure  7. These  unpublished  data  were  supplied  by  Charles H. Fox, Jr. ,  

NASA Langley  Research  Center.  

It can  be  seen  that  although  the  second  order  theory  represents a signifi- 

cant  improvement  over  the  slender wing resul ts  of Reference 2,  the  normal 

force is still overpredicted. In general  the  agreement  between  experiment 

and  the  second  order  theory is best  at the  lower  angles of attack  and  higher 

Mach  numbers.  This is readily  seen when the  normal  force  results  are  plotted 

versus  Mach  number as  has  been  done  in  Figures 8 and 9. Also  shown  in  these 

figures  are  the  theoretical   results  for  the  case  without  leading  edge  separation. 

The  exact  linear  theory  result  with  no  leading  edge  separation  is  given  by: 

where E (4)  is the  complete  elliptic  integral of the  second  kind with modulus 

given  by 

R =  i x  I 

The  corresponding  second  order  theory  result  may  be  obtained  with  the  use of 

Equation 59 a s  

r’{ 32 2 2 
P2R2 C, = s m d  C O S C C -  It- (L+& 

(This  corresponds  to  the  results  obtained  in  Reference  16. ) Equations 60 and 

62 a r e  shown  in  Figures 8 and 9. 

When the  leading  edge  becomes  sonic,  Equation 60 approaches  the 

l inearized  theory  values  for a supersonic  leading  edge  which  are  given by: 

C,, = s i n  d COS d - . I R  2 4 
4 

P ’  
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The  findings of Reference  17  indicate  that  Equation 6 3  is in   fa i r ly  good agree-  

ment  with  the  data  for  supersonic  leading  edge  wings  and  slightly  over  predicts 

normal  force  for  sonic  edge  wings.  The  second  order  theory  with  leading 

edge  separation is then  seen  to  approach  the  theory  without  leading  edge  sepa- 

ration  (and  the  data  level) as the  leading  edge  becomes  supersonic.  The 

second  order  theory  then  approaches  approximately  the  correct  level at a sonic 

leading  edge  which is consistent  with  the  vanishing of the  vortex l i f t  as the 

leading  edge  becomes  supersonic. 

It should  be  noted  that  neither  the  exact  linear  theory  nor  the  second 

order   theory is strictly  applicable  in  the  immediate  neighborhood of a sonic 

leading  edge.  Neither  theory  incorporates  the  proper  interaction  between  the 

shock  wave  and wing that is important  when  the  shock is near  the  leading  edge. 

The  straining  employed  in  the  second  order  theory  partially  accounts  for  this 

interaction;  however,  for  proper  consideration  the  shock would require  explicit 

treatment  in  the  cross flow  problem. 

The  Mach  number  trend  predicted by the  second  order  theory is evidently 

correct   because both  the  slenderness  and  nonlinear  correction  terms of the 

second  order  solution  attempt  to  regain  the  hyperbolic  character of the  gov- 

erning  partial  differential  equations  that  had  been  lost  in  the  slender wing 

approximation.  The  outer  solution  satisfies  the  wave  equation  and  therefore 

exhibits  the  hyperbolic  character of supersonic  flow.  (That  is  the  property 

that  the  disturbances  propagated  from a point a r e  confined  to its downstream 

Mach  cone.)  The  matching  between  inner  and  outer  solutions  then  partially 

transmits  this  character  to  the  inner  solution. 

The  normal  force  behavior  exhibited  in  Figures 4 through 9 may  be  under- 

stood  further  by  examining  the  surface  pressure  distributions  and wing  loading 

distributions.  Comparisons  between  theoretical  and  experimental  spanwise 

pressure  distributions  from  Reference 18 a r e  shown  in  Figures  10  and 11. 

The  theoretical  predictions  from  Reference 4 a r e  included  in  these  figures 

because of the  more  exact  representation of the  spiral   vortex  sheet  used  in 

that  analysis.  This  inclusion  required  some  compromise  since  only  limited 

results  were  presented  in  Reference 4 and  experimental   pressure  distributions 
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at precisely  these  conditions  were  not  available.  The  upper  surface  pressure 

distribution  from  Reference 4 shown  in  Figure  10 w a s  obtained by interpolation 

from  the  presented  resul ts .   The  theoret ical   resul ts   shown  in   Figure  11  are  

for  values of A = 1. 0 and < = 1. 0 while  the  experimental  data  are  for A = 1. 07 

and F = 1. 02. These  discrepancies  were  not  felt  to  be  significant  and  do  not 

obscure  the  overall  trends. 

It is apparent   f rom  these  comparisons  that  all the  theories  grossly  over- 

estimate  the  magnitude of the  upper  surface  suction  peak.  The  more  exact 

representation of the  spiral   vortex  sheet  used  in  Reference 4 provides  only a 

modest  improvement  in  the  functional  form of the  spanwise  pressure  distribu- 

tion.  The  magnitude of the  suction  peak  is  overpredicted  because  the  predicted 

vortex  locations  are  too  close  to  the wing surface.  The  peak  is  most  pronounced 

at   the  lower  angles as  is seen  in  Figure  12. 

A s  seen  in  Figure  11,  under  certain  conditions  the  predicted uppez. 

surface  pressure  peak  exceeds  the  vacuum  level which is a physical  impos- 

sibility.  This is an  indication  that  the  expansion  procedure  which w a s  used 

to  obtain  the  approximate  form of the  pressure  coefficient,  Equation 59, f rom 

the  exact  relation,  Equation  17,  has  broken down. This,  however, is evidently 

not  the  fundamental  failing of the  theory  since  the  suction  peak is overpredicted 

even  in  those  cases  where  the  vacuum limit has  not  been  exceeded (as in 

Figure  10).  The  discrepancy  in  functional  form  between  the  theory  and  experi- 

ment  indicates  that   the  cross flow  model  used,  even  in  the  case of Reference 4, 

is  inadequate.  The  flatness of the  experimental   pressure  distribution  in  the 

leading  edge  vicinity would suggest  that  secondary  separation is important  and 

should  probably  be  modeled as  a long  leading  edge  bubble. 

For   values  of @A below  approximately 3 the  second  order  theory  pres- 

sure  and  loading  distributions  have  essentially  the  same  character as the 

slender wing theory,  Reference 2. This  may  be  seen  in  Figure  12.  (The 

quantity cp used  in  Figures 12 through  14 is the  difference  between  upper 

and  lower  surface  pressure  coefficients.)  A t  higher  values of RA,  however, 

the  peak is greatly  reduced. A s  seen  in  Figures  13  and  14  the  predominant 

corrections  to  slender wing theory  occur  in  the  vicinity of the  suction  peak. 
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The  loading  along  the wing center  line  where  the  best  correlation  in  surface 

p re s su res  is obtained is only  slightly  affected  by  the  second  order  corrections. 

The  second  order  theory  then  primarily  operates  on  the  vortex l i f t  and  acts   to  

improve  the  agreement  between  theory  and  experiment.  However,  the  initial 

s lender  wing estimate  has  the  wrong  functional  form  and  cannot  be  sufficiently 

corrected  to  agree  with  the  experimental   pressure  distributions.   Improvements 

are   therefore   required  in   the  cross  flow  model  to  improve  correlation. 

A comparison of the  nonslenderness  and  nonlinear  correction term con- 

t r ibut ions  to   normal   force  and  pressure  dis t r ibut ion  can  be  made.  If the y 
term  and  straining  are  dropped  from  the  expansion  procedure  the  remaining 

higher   order   terms of the  solution  correct  only  for  the  slenderness  assumptions. 

That is, the  remaining  solution is an  approximation  to  the  exact  linearized  flow 

problem.  The  predicted  normal  forces  from  these  two  versions of the  theory 

a r e  shown i n  Figure 15  for  a n  aspect  ratio 1. 0 wing.  In general,  the  differ- 

ence  between  the  two  theories is small  except at small  angles of attack  and 

higher  Mach  numbers  where  the  full  second  order  theory  predicts  higher 

normal  force.   The  discrepancy at low angles of attack  was  unexpected.  The 

reasons  for  these  differences,   however,   may  be  seen  in  Figure 16 where  the 

theoretically  predicted  upper  surface  pressures  for  one  case  in  this  angle  range 

a r e  shown.  The  corrections  to  account  for  the  nonlinear  terms  in  the  equations 

of motion  accentuate  the  peak of the  upper  surface  pressure  distribution,  Since 

this  peak is most  prevalent  in  the  theory at low angles of attack,  the  largest 

discrepancies  in  normal  force  occur  there.  The  discrepancy at  higher  angles 

of attack  is   generally  less  significant.  

No moments  have  been  calculated  because  the  solutions  for  delta  wings 

are  conical  and  hence  the  aerodynamic  center is located at two-thirds  the  root 

chord,  The  application of the  leading  edge  Kutta  condition  prohibits  the 

development of any  axial  force,  and  therefore  normal  force is the  only  remain- 

ing pressure   force  on the  wing. 
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VII. CONCLUSIONS 

A second  order  theory  has  been  developed f o r  calculating  the  supersonic 

flow  about  slender  wings  with  leading  edge  separation.  The  theory  has  been 

developed as a correct ion  to   s lender  wing  theory.  The  Brown  and  Michael 

c r o s s  flow  model  has  been  used  to  model  the  leading  edge  separation  effects. 

Second order  theory  provides  substantial  improvement  over  the  conventional 

slender wing resul ts   for   normal   force  but  is still higher  than  experiment. 

In general   a t   moderate   Mach  numbers   the  s lender  wing error   in   normal   force 

is halved  by  the  second  order  corrections. 

The  theory  shows  the  reduction of vortex  lift  with  Mach  number, 

approaching  the  proper  levels as the  leading  edge  becomes  sonic,  and  also 

demonstrates  an  improved  aspect  ratio  variation. 

Agreement  between  theoretical   and  experimental   pressure  distributions 

is inhibited  by  the  limitations of the  cross  flow  model  used. A suitable  re- 

presentation of the  region of secondary  separation  near  the  leading  edge is 

required  before  significant  improvements  in  the  theoretically  predicted 

pressure  distributions  can  be  expected. 
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APPENDIX A 

MATCHED  ASYMPTOTIC  EXPANSION AND 
STRAINED  COORDINATE  TECHNIQUES 

A brief  outline is given of the two perturbation  techniques.   The  present 

repor t  is the  f i rs t  known combined  application of these  techniques.  This  was 

necessitated  in  view of the difficulties that are encountered in the straight- 

forward  application of the  matched  asymptotic  expansion  technique  to  super- 

sonic flow problems.  Van  Dyke discusses  these  difficult ies  in  Section 7 ,  

Chapter 6 of Reference 6 .  He developed a method to overcome  these  problems 

for  the  two-dimensional  case.  His  technique  could,  however,  not  be  extended 

to  general  three-dimensional  problems  and  necessitated  the  development of 

the  present  theory.  

The  terminology of perturbation  theory as defined  in  Reference 6 is used 

throughout  this  report. 

The  theory of matched  asymptotic  expansions w a s  originally  developed 

for  viscous flow problems.  The  fundamental  details  and  original  development 

of the  technique  may  be found in  Reference 19. An additional  reference  where 

applications  to  some  nonviscous flow problems  are   considered is Reference 6 .  
Briefly,  the  fundamental  ideas  involved  may  be  described as   fol lows.   I t  is 

assumed  that  the  velocity  potential  can  be  expanded  in a ser ies   in   some  small  

pa rame te r ,  E , (in  the  present  application,  this  parameter is the  ratio of 

wing  span  to  wing  chord)  and,  furthermore,  that  this  solution  can  be  divided 

into  two  parts:  one  part,  valid  for  small E far from  the  wing,  called  the 

outer  solution  and  the  other  part,  valid  for  small E near  the  wing,  called 

the  inner  solution.  In  general,  the  inner  and  outer  solutions  cannot  be 

completely  determined  from  the  boundary  conditions  which  apply  to  each 

solution.  This  incompleteness is resolved  by  requiring  certain  cornpatability 

between  the  solutions  referred  to as the  matching  conditions.  Following  the 

notation of Reference 6 ,  the  outer  solution is denoted  by 4. and  the  inner 

solution  by . It is assumed  that  the  outer  solution  may  be  expanded  in 
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The first Yn t e r m s  of this  expansion wil l  be  called  the wL t e rm  outer  

expansion.  Here, %,Z-j,a a re   r e f e r r ed   t o  as outer   var iables   and  are   chosen 

such  that  the  leading  term is not a function of E . (They   a re   genera l ly   the  

unaltered  physical   variables of the  problem.)  The f ;  a r e   r e f e r r e d  to as 

gage  functions  and  have  the  property  that 

Similarly,  it is assumed  that  the  inner  solution  may  be  expanded  in  an  asymptotic 

s e r i e s  as 

The first t e r m s  of this   expansion  are   referred to as the m term  inner  

expansion.  The  inner  variables,  x ,  Y,  z are  chosen  such  that   the  leading 

t e rm is not a function of E and  again 

The  inner  and  outer  variables  are  related by a function of 6 . The  expansion 

obtained  by  substituting  inner  variables  in  the m term  outer  expansion, 

expanding  for small 6 and  retaining  the first f i  t e r m s  is called  the n 
term  inner  expansion of the m term  outer  solution.  This is  abbreviated as 
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I '  n inner ( nZ outer)".   Similarly,   the n term  outer  expansion of the 

m term  inner  solution is formed by substituting  outer  variables  in  the m 
term  inner  solution  and  expanding  to fi t e rms .   This  is abbreviated as ' I  fi 

outer ( Mz inner)".  The  matching  required  between  inner  and  outer  solutions 

can  then  be  stated as: 

m outer ( n inner) = n inner ( m outer) 

This i s  the  asymptotic  matching  principle as presented  in  Reference 6 .  

The  method of strained  coordinates was  orginally  devised  by  Lighthill 

and  Whitham  for  problems  involving  the  location of bow shock  waves  in 

supersonic  flow.  The  development is given  in  Reference 8. The  basic  idea 

is that  the  first  order  solution  may  have  the  proper  form,  but  not at the 

proper  values of the  independent  variables  (coordinates)  This is remedied 

by  expanding  one o r   m o r e  of the  independent  variables as well as the  solution 

in an  asymptotic  series.  Thus,  in  addition  to  expanding  the  solution  in  the 

form of Equation ( A -  1) , one of the  independent  variables,  say % is expanded 

a s  

whe r e  

The  functions $; are  called  the  strainings and are   determined  s tep by 

step as par t  of the  solution.  The  strainings  are  determined by the  principle 

that: 

Higher  approximations  shall  be no more  singular  than  the f irst .  
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APPENDIX B 

SLENDER WING SOLUTION FOR BICONVEX 

CIRCULAR ARC PROFILE WING 

The  slender wing  solution  has  been  obtained  for a conical  wing  with 

biconvex  circular  arc  profile  in  the  cross  f low  plane.   Certain  fundamental  

difficulties  were  encountered  in  obtaining  the  second  order  solution  and  have 

not as yet  been  overcome.  However,  since  no  theoretical  results  are  available 

for  thick  wings  with  leading  edge  separation,  the  slender  wing  results  are 

presented  along  with a discussion of the  problems  associated  with  the 

extension of the  solution  to  higher  order. 

The  general  formulation  and  expansion  procedures  for  thirk  wings is 

given  in  Section IV  of this   report .  

The  conventional  slender  wing  result is the  f irst   term  in  the  inner 

expansion of ?,h, . The  inner  variables  are  selected as in  the  infinitely 

thin  case  and  the  problem  reduces  to  the  quasi  two-dimensional  problem  in 

the  cross  flow  plane  in  precisely  the same fashion.  The  partial   differential  

equation  for 4; is  

with  boundary  conditions 

+ 0 on $ = o  

For  the  biconvex  profile E = a and  the  surface  ordinates  are  given  by 

where 5 is the  ratio of wing  half 

c r o s s  flow  plane).. (The  plus  sign 

and  the  minus  sign  to  the  lower.) 

thickness  to  half  span  (thickness  ratio  in 

in  Equation B - 3  applies  to  the  upper  surface 

The  quantity t is assumed  to  be of order  
- 
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one  and  for a conical wing is a constant.  This  thickness  ratio  may  be 

expressed  in   terms of 8 , the  edge  angle,  by t = 
I - cos 8/2 

sLn Q/2 

The  Brown  and  Michael  representation of the  spiral   vor tex  sheet   i s  

used.   The  cross  flow model is shown  in  Figure 17A. The  spiral   vortex 

sheets   are   represented by a concentrated  vortex of strength r and - r 
located at r1 and - S, respectively. A cut  extends  from  the  leading 

edge  to  each  corresponding  vortex.  The  cross flow problem  is   easily 

handled  by  conformal  transformations. 

The  transformation 

' i -  kz a - R  I" 
transforms  the  biconvex  profile  to a c i rc le  of diameter  o! in  the c plane. 

(See  Reference 20) such  that 

6 d  = & .  (B-6) 

The  case  for 4 = 2 corresponds to  a flat  plate  and  the  following  analysis 

reduces  to  the  analysis of Reference 2 in  this  case.  In  the d plane  the 

solution  is known (See  Reference 21) a s  

The 1: plane is shown in  Figure 17B. The  transformed  vortex  location 

5, and r remain to be  determined by the  overall  force  balance  on  each 

vortex and cut  and  the  Kutta  condition at the  leading  edge.  The  surface 

boundary  conditions  are  automatically  satisfied by the  properties of the 



conformal  transformation.  The  cut  in  the  cross flow  potential  represents a 
vortex  sheet  where  the  vorticity is aligned  perpendicular  to  the  freestream. 

The  Kutta-Joukowsky  force  produced on this  sheet by the  f reestream  must  

balance  the  Kutta-Joukowsky  force  produced on the  concentrated  vortex  by 

the  velocities  in  the  cross flow plane.   This  may  be  expressed  as 

where -1 d WTc is the  complex  cross flow  velocity  evaluated  at 

without  the  contribution of the  vortex  located at . d c  r = 6  

The  smooth  outflow  from  the  leading  edge  or  leading  edge  Kutta 

condition  is  given by 

Using  Equation (B-6) for w,, these  conditions  can  be  specifically  formulated. 

The  force  balance  is 

where = - and A is  the wing semi  apex  angle.  The  Kutta tan A 
condition  is 

sin a 

(B-11) 
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q, is  available  from  Equation  (B-5) as 

r, = d 

(B-  12) 

For  specified  values of the  parameters  and 4 these  three 

equations  constitute a system of three  nonlinear  complex  algebraic  equations 

for  the  three  unknowns , z, , and - . This  system  has  been  solved 

numerically.  The  resulting  values of vortex  positions  are  shown  in  Figure 18. 

The  resulting  values  for  vortex  strength  are  shown  in  Figure 19. It is 

noticed  that  for a given  value of E the  vortex is pushed  further  outboard 

and  drawn  closer  to  the  wing  surface  with  thickness. No pressure  dis t r ibut ions 

have  been  calculated  but,  since  the  vortex is closer  to  the wing  and further 

e, 

- 

outboard  for a given  value of e , no improvement  in  the  upper  surface 

pressure  peak  can  be  expected.  The  slender  wing  normal  force  results  have, 

however,  been  calculated.  Using  the  momentum  theorem  the  normal  force 

may  be  expressed as 

where 

(B-13) 

(B-14) 

The  normal  force  parameter G, has  been  plotted  in  Figure 20. The 

first te rm  in  G, , Equation  (B-14),  corresponds  to  the  unseparated  result 

and  the  second  term  accounts  for  the  vortex l i f t .  The  unseparated l i f t  increases  

with  thickness  and  the  vortex l i f t  decreases  with  thickness  producing  the 

c rossovers  at low E in   Figure 20.  

A s  Seen  in  Section Iv of this  report  the first order  lifting  and  non-lifting 

problems  separate.   The  slender wing  thickness  solution is then  the first 

term  in  the  inner  expansion  for vz . This  problem is also  easily  solved  by 
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where 

(B-15) 

(B- 16) 

The  constant B is determined  from  the  boundary  condition , Equation (13 ) ,  as 

where 

Z t  ?7- e, = tan-’ - > O L ~ + L -  7-t 2 

(B-17a) 

(B-17b) 

Again  no  thickness  pressures  have  been  calculated.  However, it is easily 

seen  that   the  thickness  pressure  will   be  singular at the  leading  edge  whereas 

the  application of the  Kutta  condition  has  removed  the  leading  edge  singularity 

from  the  lifting  portion of the  solution. 

It  should  also  be  noted  that  in  the  present  expansion  scheme  the 7y2 

solution  does  not  affect  the  solution.  That is, there  is no c r o s s  flow 

velocity  contribution  from  the  source  term  (Equation  (B-15))  in  the  force 

balance  (Equation  (B-10)) as is present  in  the  analysis of Bryson  (Reference  21). 

It may  then  be  concluded  that  the  inclusion of thickness  in the flow  model 

will   result   in  lower  normal  force  but  will   not  improve  the  form of the  pressure 

distributions. 

The  problems of extending  the  solution  for  the  biconvex  profile  to 

higher  order  are  associated  with  the  determination of the  particular  portion 

of ! x 2 7  . These  problems  are  demonstrated  in  the  following.  The  partial  
differential  equation  for $:z, is Equation  (27).  Following  the  previous 
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fashion  for  solving  this  equation  the  general  solution  for  the  particular  portion 

of w,,, can  be  expressed  in  the  form of an  indefinite  integral as 

The  integrals  appearing  in  Equation  (B- 18) can  only  be  evaluated  analytically 

for a few select  values of . The  outer  l imit  of Equation  (B-18) is needed 

for  matching  with  the  outer  solution.  The  limiting  process  and  integration 

operation  cannot  in  general  be  interchanged as is shown  by  the  following 

example  for  the  case of unseparated  flow  about a flat wing ( A. = 2.0). 

Let w,, = - i & r 2 -  R" 
in  outer  variables  this is 

then 

(B - 19a) 

(B-20) 

and 

(B-21) 

Comparison of Equations  (B-21)  and  (B-20)  indicates  that  the  constant  terms 

(those  terms not  involving 3 ) a r e  not  faithfully  reproduced  when  the  limit 

process   and  integrat ion  order   are   reversed.  An additional  constraint  is  needed 

to  uniquely  determine  the  constants of integration  in  the  expansion  procedure. 

A t  present  this  constraint  is unknown. The  work on this  aspect of the  problem 

was,  however,  not  pursued  further  since  the  full  second  order  solution  for  the 

flat wing  had  been  obtained  and it did  not  appear  that  the  inclusion of thickness 

in  the  cross flow  problem would substantially  improve  the  correlation of wing 

surface  pressures .  
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APPENDIX C 

PRESSURE DISTRIBUTION FOR  INFINITELY THIN WING 

The  pressure  dis t r ibut ion is found from  the  evaluation of Equation (59) .  
It is  first noted  that  on  the  wing  surface  the  following  terms  do  not  contribute 

to  the  pressure  coefficient: 

1) The $:,s t e r m  

2) The  particular  portion  (Equation (41)) of #:z, 

3)  The F, t e r m  of r: (Equation (5 8)) 

With these  simplifications  and  the  assumption of conical  flow, EcA;lation (59) 
reduces  to 

where  for  conical  flow 
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and  the  substitution a, = 4 (q +if 1 has  been  used.  The  required 

derivatives of $ f are 

a 4' R ,  uz 
W,, = - +m 1 

(C -  10) 

whe r e  

z 
u." - 

A (C-11) 

The  negative  value of is used  on  the  upper wing surface  and  the 

positive  value is  used  on  the  lower  wing  surface.  The  angles 6, and 

are  the  arguments of the  logarithmic  term of hl,, . The  proper  branch 

is most  easily  selected  in  the  transformed  plane = . This 

plane is shown  in  Figure 21 .  In  this  plane  the wing transforms  to a slit 

along  the  imaginary axis from -A #. to  and  the  concentrated  vortices 

are   located at and - w. The wing tips  transform  to  the 

origin  and  hence  the  branch  cuts  in  the  potential  are  lines  from  each  vortex 

to the  origin. To  confine  the  discontinuities of the  cross  flow solution  to  the 

cuts  and  wing  surface  the  function  must be defined  differently  in two domains. 
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Domain I then  contains  the  right-hand  wing  panel  and 8, and 6 2  

a r e  given  by 

and 

(C- 13) 

and 

e, = - a, 

A similar  scheme  is  used  in  Domain 11. The  resulting  composite 

function i s  then  continuous  along  the  imaginary  axis  in  the x plane. 

From  the  resulting  function  then  it  can  be  shown  that  the  following 

expressions  are  valid  across  the  entire wing span. 

On the  lower  surface 

0 , -  e, = - T  -2a, 

(C- 16) 

and  on  the  upper  surface 

The  result ing  jump  in  pressure  at   the wing  tips is then  consistent  with 

the  Kutta-Joukowski  force on  the  feeding  sheet. 

The  normal  force  on  the wing is then found  by integrating  numerically 

the  pressure  jump  over  the wing a r e a .  

It  should  be  noted  that  in  the  unseparated flow case  where $:s is 

an odd function of that   the  last   term of Equation (C- 1) will  not  contribute 

to  normal  force.  
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Figure 2 COORDINATE  SYSTEM  AND  WING  GEOMETRY 
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Figure 3 BROWN & MICHAEL FLOW MODEL IN CROSS FLOW PLANE 
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